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The accuracy and efficiency of several lower and higher order time integration
schemes are investigated for engineering solution of the discretized unsteady com-
pressible Navier–Stokes equations. Fully implicit methods tested are either the back-
ward differentiation formulas (BDF) or stage-order two, explicit, singly diagonally
implicit Runge–Kutta (ESDIRK) methods. For this comparison an unsteady two-
dimensional laminar flow problem is chosen: flow around a circular cylinder at
Re = 1200. At temporal error tolerances consistent with engineering simulation,
� ≈ 10−1–10−2, first-order implicit Euler (BDF1) is uncompetitive. While BDF3
is quite efficient, its lack of A-stability may be problematic in the presence of
convection. At these same error tolerances, the fourth-order ESDIRK scheme is
2.5 times more efficient than BDF2. It is concluded that reliable integration is
most efficiently provided by fourth-order Runge–Kutta methods for this problem
where order reduction is not observed. Efficiency gains are more dramatic at smaller
tolerances. c© 2002 Elsevier Science (USA)

INTRODUCTION

The vast majority of flowfields encountered in engineering applications are unsteady.
These flowfields may include inherently unsteady flow separation, unsteady boundary- and
free-shear flows, as well as unsteady boundary conditions, possibly caused by flow actu-
ators. In spite of this, since one is often concerned with only mean flow quantities and
steady flowfields are less computationally demanding, unsteady flow simulations have his-
torically been more rare. Contemporary computer resources now render three-dimensional
unsteady flowfield computation viable [1, 4]. With this transition in focus from steady to
unsteady simulations, it is appropriate to examine the relative efficiency of fully implicit
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temporal integration techniques for unsteady compressible flows of engineering interest.
As these simulations consume vast computational resources, their efficiency is of great im-
portance. Further, the commonly held notion that higher order methods have no application
in engineering contexts needs examination. Marx [12] has considered this same issue but
only used methods of orders one and two.

For implicit methods, efficiency may be conveniently measured by the work required to
maintain some particular fixed local integration error for any given simulation. Control-
ling the local error will tend to control the global error. As error tolerances are reduced,
higher order methods are more efficient; hence, efficiency is tolerance dependent. For ex-
ample, Kennedy et al. [8] compare explicit third-, fourth-, and fifth-order Runge–Kutta
(RK) schemes and find that fourth-order methods are more efficient than third-order ones at
� < 10−1, but fifth-order methods are more efficient than fourth-order methods at � < 10−3–
10−5. Efficient methods that are not reliable or have other significant shortcomings are of
less interest.

The time step required to maintain a fixed temporal accuracy varies during a typical
simulation. Therefore, a fixed time step is not optimal, as it must be chosen to achieve
the desired local error tolerance during the most demanding portion of the simulation. To
avoid this, efficient methods must also possess an error estimation procedure and an error
controller to adjust the time step accordingly.

The hallmark of large-scale aerodynamics calculations, as well as many other engineering
simulations, is that they seldom require relative error tolerances tighter than � ≈ 10−1–
10−2. Calculations that are accurate to one or two significant digits are frequently sufficient.
Typical simulations utilize first- or second-order methods without error estimation/step-
size control. For these aerodynamic calculations, the second-order-accurate BDF2 scheme
is often preferred. The central question of this study then becomes whether higher order
methods are more or less efficient than traditional methods at engineering error tolerances
while maintaining the robustness of BDF2.

A production aerodynamics solver is needed for this study. For this, the extensively
tested and well-documented solver of Vatsa (TLNS3D) [18] is chosen. This multiblock
structured grid solver is representative of a broad class of commonly used flow solvers. The
TLNS3D (Thin-Layer Navier–Stokes 3D) code utilizes a special form of the unsteady thin-
layer Navier–Stokes equations. The spatial terms are discretized using a conventional cell-
centered finite-volume scheme with artificial dissipation added for stability. Fully implicit
time discretization is accomplished using either fixed coefficient BDF or ESDIRK methods.
All simulations are conducted at fixed step size. The resultant nonlinear algebraic equations
are solved iteratively in pseudotime with a multigrid acceleration used to speed up the
convergence to (pseudotime) steady state.

In this paper, first, the governing flow equations and the space discretization are given.
Thereafter, the time discretization techniques employed are extensively discussed. A brief
description of the solution algorithm follows. After validation of the space-time method
for unsteady laminar flow around a circular cylinder, accuracy and efficiency of the time
integration schemes are discussed.

GOVERNING EQUATIONS/SPATIAL DISCRETIZATION

In the present work, a modified version of the thin-layer Navier–Stokes equations is used
to model the flow. The equation set is obtained from the complete Navier–Stokes equations
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by retaining only the viscous diffusion terms normal to the solid surfaces. For a body-fitted
coordinate system (�,�, � ) fixed in time, these equations can be written in the conservative
form as

∂(U)

∂t
= −∂(F − Fv)

∂�
− ∂(G − Gv)

∂�
− ∂(H − Hv)

∂�
= Ŝ(U(t)), (1)

where U represents a combination of the transformation Jacobian J and the conserved
variable vector. The vectors F, G, H, and Fv, Gv, Hv represent the convective and diffu-
sive fluxes in the three transformed coordinate directions, respectively. These equations
represent a generalized form of the classical thin-layer Navier–Stokes equations and in-
clude all normal components of the viscous stress terms. The TLNS3D computer code
is used in this study to solve Eq. (1). The spatial terms in Eq. (1) are discretized us-
ing a standard cell-centered finite-volume scheme. The convection terms are discretized
with second-order central differences with scalar/matrix artificial dissipation (second- and
fourth-order-difference dissipation) added to suppress the odd–even decoupling and oscil-
lations in the vicinity of shock waves and stagnation points [18]. The viscous terms are
central differenced with second-order formulas. Many references detail the discretization
and implementation issues of TLNS3D (see the work of Vatsa and Wedan [18] for further
details).

TEMPORAL DISCRETIZATION

Consider the integration of the system of ordinary differential equations (ODEs) repre-
sented by the equation [6, 7]

dU
dt

= S(U(t)).

In the present case, the vector S results from the semidiscretization of the equations of fluid
mechanics as given by Eq. (1). It contains convection, and diffusion, but could include reac-
tion, radiation, and/or buoyancy. The responsibility of the integrator is to integrate any S with
which it is provided. Trouble often arises when the Jacobian of S, ∂S/∂U, has large eigen-
values. This may give rise to stiffness. Nontrivial near-wall stiffness is not uncommon in
practical engineering problems due to grid clustering and increases with Reynolds number. A
useful definition for stiffness states that a problem is stiff when the largest scaled eigenvalue
of the Jacobian, ‖z = �(	t)‖, contained in the complex left-half-plane (LHP) becomes
much greater than unity. The resulting stiffness is then governed by both the Jacobian and
the chosen time step. Ideally, the time step is selected solely based on error considerations
and a good method simply executes this step size in a stable and robust fashion. Time inte-
gration methods that do not amplify any LHP-scaled eigenvalues are called A-stable. While
A-stability is generally necessary, it is often not sufficient. We further demand that all eigen-
values, ‖z → −∞‖, be completely damped. Hence, in the paper we consider only L-stable
methods and the somewhat less-desirable and stable L(�) methods. Making this choice not
only avoids numerical instability, it also facilitates convergence of the nonlinear equation
solver.

Popular implicit ODE integration methods are generally either distinctly multistep or
multistage methods. Each has different strengths and weaknesses. Implicit multistep BDF
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methods compute each U-vector update to design order of accuracy using one nonlinear
equation solve per step. Unfortunately, they are not A-stable above second order. Addi-
tionally, they are not self-starting and have diminished properties when used in a variable
step-size context. Practical experience indicates that large-scale engineering computations
are seldom stable if run with BDF4 [13]. The BDF3 scheme, with its smaller regions of
instability, is often stable but diverges for certain problems and some spatial operators.
Thus, a reasonable practitioner might use the BDF2 scheme exclusively for large-scale
computations due to its L-stability rather than L(�)-stability. This explains why BDF2 is
one of the current methods of choice in the computation of large-scale engineering flows.
Practical RK methods such as ESDIRK methods can be made arbitrarily high order while
retaining L-stability but possess intermediate U-vectors with reduced order of accuracy and
lesser stability. This reduced stage order may give rise to order-reduction phenomena in the
presence of substantial stiffness. ESDIRK schemes with s stages require (s − 1) nonlinear
equation solves per step. Although it is possible to achieve progressively higher stage-order
methods, such as the Radau IIA family, this is not likely to be practical in the current con-
text. There is much less experience with implicit RK methods than BDF methods in the
computation of large-scale engineering flows.

The general formula for a k-step, order-k, BDF scheme can be written as

U(n+k) = −
k−1∑
i=0

�i U(n+i) + (	t)�kS(n+k). (2)

At each time-step the BDF formulas involve the storage of k + 1 levels of the solution
vector U, and the implicit solution of one set of nonlinear equations. Stability diagrams for
these methods may be found in Hairer and Wanner [7]. At order k > 2 one finds an unstable
zone for scaled eigenvalues in the complex LHP. At orders {1, 2, 3, 4, 5, 6} the methods
are L(�)-stable where � is given by {90, 90, 86.03, 73.35, 51.84, and 17.84◦}. For these
same orders, �k is given by {1, 2/3, 6/11, 12/25, 60/137, 60/147}. Smaller values of �k

facilitate iterative convergence of the nonlinear algebraic system at each step.
ESDIRK methods [9, 10] are implemented as

Uk = Un + (	t)
k∑

j=1

akj S(U j ), k = 1, s,

Un+1 = Un + (	t)
s∑

j=1

b j S(U j ), (3)

Ûn+1 = Un + (	t)
s∑

j=1

b̂ j S(U j ),

where s is the number of stages, akj are the stage weights, and bi and b̂ j are the main
and embedded scheme weights. The vectors U and Û are the pth-order and (p − 1)th-
order solutions at time level n + 1. The vector Û is used solely for estimating error and is
virtually free. The Butcher tableau for stiffly accurate ESDIRK schemes (here represented
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with s = 5) takes the form

0 0 0 0 0 0
c2 a21 	 0 0 0
c3 a31 a32 	 0 0
c4 a41 a42 a43 	 0

1 b1 b2 b3 b4 	

b1 b2 b3 b4 	

b̂1 b̂2 b̂3 b̂4 b̂5 ,

where ci are the abscissas that denote the point in the time, t + ci	t , where the stage i is
evaluated. ESDIRK schemes differ from traditional SDIRK methods (see Section IV.6 in
Hairer and Wanner [7]) by the choice a11 = 0, which permits stage-order-two methods. The
stiffly accurate assumption (asj = b j ) makes the new solution Un+1 independent of any
explicit process within the integration step. Three representative ESDIRK methods were
chosen for this study: a third-, fourth-, and fifth-order method. The first two, ESDIRK3
and ESDIRK4, are taken directly from Kennedy and Carpenter [9] while ESDIRK5 was
constructed specifically for this study. ESDIRK3, ESDIRK4, and ESDIRK5 have s = 4, 6,
7 and 	 ≈ 0.4359, 	 = 0.2500, 0.1840, respectively. The coefficients for ESDIRK3 and
ESDIRK4 are included in the Appendix. While no major problems were encountered with
ESDIRK5 in this laminar study, design shortcomings surfaced when applying the scheme
to turbulent flows. As such the coefficients for the ESDIRK5 scheme are not included in
this work.

SOLUTION ALGORITHM

Discretizing Eq. (1) with an s-stage ESDIRK scheme represented in Eq. (3) yields for
stage k the expression

Uk − Un

	t
+

k∑
j = 1

akj S j = 0, k = 1, s (4)

with

S j = ∂(−F + Fv)

∂�
+ ∂(−G + Gv)

∂�
+ ∂(−H + Hv)

∂�
.

The vector Uk is the solution at stage k, Un is the solution at the previous time level n, and
akj are the Butcher parameters for the ESDIRK method used. Again note that in our case
the last stage gives the solution at the new time level; that is, Un+1 = Us . Advancing the
solution vector Uk from time level n → n + 1 requires solving the sequential set of s − 1
nonlinear algebraic equations defined in Eq. (4).

PSEUDO-TIME-ITERATIVE ALGORITHM

We follow the work of Melson et al. [13], which was originally developed for a BDF
algorithm. Equation (4) can be difficult to solve in its present form. Thus, the pseudotime
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term ∂Uk/∂
 is added to each stage k, yielding the expression

∂Uk

∂

+ Uk − Un

	t
+

k∑
j=1

akj S j = 0, k = 1, s. (5)

In this form, Eq. (5) is amenable to all the nonlinear solving machinery available in TLNS3D.
Each nonlinear equation is marched in pseudotime with multigrid acceleration until a pre-
determined convergence criterion is satisfied. Equation (5) can be rewritten in the form

∂Uk

∂

+ Uk

	t
+ 	Sk + E = 0, k = 1, s. (6)

with

E = −Un

	t
+

k−1∑
j=1

akj S j ,

where E includes all the iteration-independent information at stage k of the ESDIRK
scheme. Discretizing Eq. (6) in the variable 
 using an Runge–Kutta (RK
 ) scheme yields

Ukq − Uk0

	

+ �q

(
Ukq

	t
+ 	Sk(q−1) + E

)
= 0, q = 1, 5, (7)

where the q is the stage number of the RK
 scheme. Note that the contribution from the
time term is treated implicitly, that the inviscid and viscous flux terms are treated explicitly,
and that first-order temporal accuracy is sufficient for this scheme. Adding, subtracting,
rearranging terms, and accounting for residual smoothing in Eq. (7) yields(

1 + �q	


	t

)
Ukq = Uk0 + �q	


	t
Ukq−1 − �q	
L−1

irs

[
Ukq−1

	t
+ 	Skq−1 + E

]
, (8)

where L−1
irs is the implicit residual smoothing matrix. Note that the bracketed term in Eq. (8)

is still the residual of the physical time ESDIRK scheme. Bijl et al. [2] give a pseudotime
analysis of Eq. (8) and determine the optimal values of the pseudo-time-step 	
 and the
residual smoothing parameters. Only their major conclusions are presented in this work.

The stability analysis for each stage is identical because the diagonal coefficient 	 is
the same on each stage of an ESDIRK. The stability analysis for the BDF scheme given
by Eq. (2) is similar, with the variable 	 replaced by �k . The independent parameters in
Eq. (8) are R = 	
/	t , the ratio of time steps; �̂ = 	CFL, the scaled pseudo-time-step
CFL condition; and R, the implicit residual smoothing parameter. An exhaustive study
of R, �̂ , and R reveals that the residual smoothing is most productive when the effective
stability limit of the subiteration is increased by a factor of 2–3. The pseudotime subiteration
is stable for �̂ ≈ 7 and has the best damping characteristics in the �

2 ≤ � ≤ � range for
values of �̂ near the stability limit. These parameters are nearly identical to those used in
the steady-state solver TLNS3D. Extensive details of the underlying steady-state solver can
be found in the work of Vatsa and Wedan [18]. The same concept for the computation of
unsteady flows is used by other researchers (see, for example, Martinelli and Jameson [11]
and Swanson and Turkel [16]).
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DIAGONAL COEFFICIENTS

The pseudotime subiteration is strongly influenced by the diagonal coefficients 	 and �k .
In TLNS3D the pseudotime subiteration is always advanced with the maximum allowable
scaled pseudotime step, �̂ ≈ 7. The rate of relaxation in nonscaled pseudotime is therefore
inversely proportional to the diagonal coefficient 	 : the smaller the value of 	 , the more
rapidly the pseudotime subiteration progresses. The values 	 and �k vary significantly for
different physical time-advancement schemes. The �k coefficients for the BDF schemes
vary by a factor of approximately two. The 	 coefficients for the ESDIRK schemes vary
by approximately a factor of two and are generally much smaller than the BDF �k values.

The ESDIRK schemes can be optimized to improve their efficiency. The important pa-
rameters are 	 and the number of implicit stages, s − 1. A fortuitous trend observed with
the stiffly accurate, L-stable ESDIRK schemes is a general decrease in the value of 	 with
increasing order and stage number. Increasing the number of implicit stages does not al-
ways decrease the efficiency of the scheme; it sometimes yields greater efficiency. The
value 	 = 1

4 in the ESDIRK4 scheme is an example of five implicit stages producing a more
efficient fourth-order scheme than four implicit stages produce with 	 ≈ 0.5728.

VALIDATION OF THE SPACE–TIME METHOD

The accuracy of the space–time integration methods is investigated for an unsteady lam-
inar flow test case. The test problem is laminar flow around a two-dimensional circular
cylinder at a Reynolds number of 1200 and a Mach number of 0.3. Reference nondimen-
sionalization is based on infinity values and cylinder diameter. The initial flow is symmetric
with zero lift. As the wake behind the cylinder starts to grow, it becomes unstable and
begins to shed from alternate sides of the cylinder. Detailed numerical and experimental
investigations of this flow have been performed by several authors [3, 5, 15, 16]. The variety
of grids used in this study ranged from 73 × 49 to 289 × 193. The computational boundary
is located at a distance of 20 diameters, while the distance between the wall and the first
grid point is 0.001 times the diameter of the cylinder on the 97 × 65 grid. Grid points are
clustered in the wake. Contour plots of the density reveal that the near-wall vortical struc-
tures appear to be sufficiently resolved even on the 97 × 65 grid, but that vortex resolution
is lost as the grid expands in the farfield.

Figure 1 shows a comparison of the lift history for one shedding cycle as calculated on
the 97 × 65 and 193 × 129 grids. The 193 × 129 data is shifted so that the first zero in lift
coincides on both curves. Small differences in the lift are seen near the peaks of the cycle. A
time-step 	t = 1

2 is chosen, ensuring that the dominant error component is the spatial contri-
bution. Stepwise temporal error in these calculations is 10−4, 10−5, for L∞, L2, respectively.
Cumulative error increases by approximately one order of magnitude in each case.

Figure 2 shows the convergence of the Strouhal number on the sequence of five grids.
The convergence rate of the spatial algorithm is approximately 1.64 (based on a Richardson
extrapolated exact solution of 0.2467 and a least-squares fit of the data). The values of
the Strouhal number are larger than 0.21, reported from experiments [4, 15]. As Mittal
and Balachandar report [14] this is likely caused by the onset of three-dimensional effects
that are not captured in our two-dimensional computations. Two-dimensional computations
performed by other researchers [5, 17] resulted in larger Strouhal numbers too, in the range
of 0.23–0.24. This study and an exhaustive study of inviscid vortex propagation support the
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FIG. 1. Comparison of lift over one shedding cycle between coarse and fine grids.

conclusion that the space–time operator is working properly, and that the spatial operator
converges on these stretched grids at nearly the design rate of two.

The objective of this study is to compare temporal schemes at engineering relative error
tolerances (1–10%). It is therefore consistent to choose a spatial grid having a comparable
level of error. The 97 × 65 grid has approximately 5% error (0.24/0.23 − 1) and provides
spatial resolution adequate for capturing the relevant large-scale features in the shedding

FIG. 2. Convergence of Strouhal number.
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process; as such, it is chosen as the basis of most of the temporal refinement studies presented
in this work.

TEMPORAL ACCURACY

A temporal refinement study is performed to assess the accuracy of various ESDIRK
and BDF schemes. The initial condition for the study was obtained by simulating the limit
cycle behavior of the flow for approximately 20 shedding cycles, with a relatively small
time step (	t = 1

2 ). After 20 cycles, the solution was stored in a restart file for use as the
initial condition in the subsequent studies. A classical temporal study was then performed
from this initial condition. A typical practitioner is interested in lift, drag, pitching moment,
skin friction, and the frequency spectrum over several cycles. Thus, the time interval of
the study includes approximately 1 1

4 shedding cycles. This interval is sufficient in length
to allow accumulation of temporal error during the shedding cycle. No exact solution is
known for this problem, so a “numerically exact” solution was obtained using a small time
step and a small iteration tolerance on the nonlinear solves. The numerically exact time
step used was 	t = 0.05, and a stopping criterion for the iterative solve of the implicit
equations was max(residual) < 10−6. The “exact” solution is accurate to approximately six
significant digits in the lift when run with the ESDIRK4 scheme.

The lift on the body is used as the representative measure of error in all calculations.
Other integral measures including viscous drag, skin friction, total drag, pitching moment,
and L2 and L∞ norms over the domain were studied. All integral measures yield nearly the
same qualitative conclusions, although the quantitative errors are different for each case. A
detailed investigation of the location of the maximum temporal error reveals that the vortex
generation process in the near-wall regions is the most temporal demanding portion of the
cycle. It is not surprising, therefore, that the lift integral is a good measure of total error in
the calculation.

Detailed results from the study are now presented. Figure 3 shows a detailed refinement
study with the ESDIRK4 scheme. Shown are logarithms of the solution errors in the lift,

FIG. 3. Convergence behavior for lift, drag, and pitching moment as calculated with the ESDIRK4 scheme.
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viscous drag, total drag, and pitching moment as a function of logarithm of time step. In
all cases, the nonlinear system is solved to strict tolerances to eliminate “iteration” error
as a contaminating variable in the study. At coarse time steps the solution accuracy de-
teriorates away from design accuracy. For sufficiently small time steps, design accuracy
is clearly demonstrated in all variables. For example, a least-squares fit of the finest four
data points on each curve reveals that the convergence rates for lift, drag V , drag T , and
pitch are 3.9628, 4.0257, 4.0478, and 4.0251, respectively. The coarsest data point corre-
sponds to a time step of 	t = 2, for which 12 points resolve the temporal shedding cycle.
Note that 15–20 points in time are needed to resolve the cycle before the fourth-order
scheme converges with design accuracy. From spatial experience, this resolution is consis-
tent with conventional estimates of “points-per-wavelength” needed to resolve a periodic
wave.

The stiffness in this problem can be inferred by comparing the physical and pseudotime
steps, rather than calculating the eigenvalues � of the spatial operator. TLNS3D explicitly
advances the spatial terms S(U(t)) in pseudotime, which requires ‖Z‖ = ‖�	
‖ ≈ 1. Ac-
curacy considerations require that the physical time step satisfies 	t = O(1). Thus, the
stiffness is O((	
)−1). The pseudotime step satisfies 	
 ≈ 0.0005 on the 97 × 65 grid,
which translates to a stiffness of O(103). Stiffness increases on finer grids.

Implicit Runge–Kutta schemes are susceptible to order reduction for stiff problems.
Order reduction results from stiff components of the solution converging at a rate which is
governed by the stage order rather than the design order of accuracy. (The ESDIRK3,4,5
schemes have a stage order of two and design orders of 3, 4, 5, respectively.) The lower
convergence rate of the stiff components may or may not adversely affect the accuracy
of the nonstiff components and is strongly problem dependent. The discrete solution of
the cylinder (Re = 1200, Ma = 0.3) converges at the design order rate (3, 4, 5) for all
variables of interest, including lift, drag, and pitching moment. Order reduction of the
stiff components is not a critical issue in the solution of the cylinder at the stated flow
conditions.

Figure 4 presents the error in lift versus the time step (log–log) for three BDF schemes
and three ESDIRK schemes. Again, the nonlinear equations at each stage (step) are solved
to tolerances which are small compared with the absolute error in the calculation. Accuracy
increases dramatically in going from BDF1 (sometimes referred to as implicit Euler) to
ESDIRK5. For example, a relative error tolerance of 10−1 is achieved with a time step
of 	t = 1 for the ESDIRK4 and ESDIRK5 schemes, while the BDF1 and BDF2 require
	t = 10−2 and 10−1, respectively. The BDF3 and the ESDIRK3 schemes have nearly the
same absolute level of error, although the convergence behavior of the BDF3 scheme is
sporadic. No explanation of this behavior was identified.

As mentioned previously in this work, the BDF2 scheme is consistently used by prac-
titioners because of its robustness, simplicity, and efficiency. The results in Fig. 4 clearly
show that the ESDIRK4 scheme can be used at time steps that are a factor of 10 larger
than those used in the BDF2 and still achieve similar accuracy. The BDF2 scheme achieves
design accuracy at approximately 	t = 0.1–0.2. At larger time steps the second-order con-
vergence behavior is not realized. At fine tolerances, this difference becomes even greater.
However, Fig. 4 cannot be used to conclude that the ESDIRK4 scheme is more efficient
than the BDF2 scheme. To do so requires detailed accounting of the work involved in each
algorithm and is not a simple task.
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FIG. 4. Convergence as a function of time step for BDF and ESDIRK schemes.

TEMPORAL EFFICIENCY

For large computations, the work involved in advancing the solution over the interval
T0 ≤ t ≤ T f is proportional to the number of nonlinear solves required over that interval.
The work also depends strongly on how quickly each nonlinear solve converges. The number
of nonlinear solves is simply NL = T f −T0

	t Is , where Is is the number of implicit stages per
time step. For the BDF schemes Is = 1. How rapidly the nonlinear solve converges is a
much more difficult aspect to predict. The BDF schemes benefit slightly from the smaller
physical time steps because they provide a better initial guess for the nonlinear iteration.
(Even though the trivial initital guess is used, effects of initial conditions are rapidly swept
out of the domain by the multigrid algorithm and only slightly influence the total work.) In
addition, decreasing	t alters the parameter R = 	


	t , which slightly improves the smoothing
rate of the RK
 pseudotime solver. Conversely, the ESDIRK schemes have a much smaller
diagonal coefficient 	 , which significantly increases the asymptotic convergence rate of the
multigrid process.

Figure 5 presents the convergence of the six schemes as a function of the required
work. Three accuracy levels are chosen, 10−1, 10−2, and 10−3, as representative of desired
engineering accuracy levels. The appropriate values of 	t needed for each method are
obtained from Fig. 4. For these calculations the tolerance ratio is T = 1

200 where T is
defined as the ratio of nonlinear algebraic error to temporal integration error at each
stage/time step. The algebraic error for the nonlinear iteration is based on the L∞ norm
of the residual. The work from each method is measured as the total number of multigrid
cycles used in the entire time interval.
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FIG. 5. Convergence as a function of work for BDF and ESDIRK schemes.

An obvious conclusion from the study presented in Fig. 5 is that the BDF1 scheme (Euler
implicit) will never compete with the higher order schemes in terms of efficiency. Similarly,
the BDF2 scheme is only competitive with the third-, fourth-, and fifth-order schemes at
extremely coarse tolerances. For example, the BDF2 is 2.5 times less efficient than the ES-
DIRK4 scheme at an error tolerance of 10% (one significant digit in the solution accuracy).
As the error tolerance becomes more strict, the high-order schemes easily outperform the
BDF1 and the BDF2 schemes. For a desired temporal error of 1% in lift, the fourth-order in-
tegration method ESDIRK4 only requires 1.5% of the work required by BDF1, an efficiency
increase with a factor of 70. For a temporal error of 0.1%, ESDIRK4 requires 10% of the
work of BDF2, an efficiency increase with a factor of 10. Note that again the BDF3 scheme
shows an irregular behavior. Perhaps this is because the BDF3 solution oscillates around the
exact solution for different time steps and sometimes by coincidence yields unusually low
levels of error. The work required for the BDF schemes appears to increase dramatically
for small error tolerances. A possible explanation is that the asymptotic convergence rate of
the multigrid algebraic solver is sensitive to the diagonal coefficients 	 , (�k). The ESDIRK
schemes have smaller diagonal coefficients than do the BDF schemes.

The fourth- and fifth-order ESDIRK schemes have exactly the same accuracy–work ratio,
and their convergence behavior appears to be logarithmic in nature. Both have different
time steps, stages, and diagonal coefficients 	 ; there is no reason why they should lie on the
same line or have logarithmic convergence behavior. Though both have the same efficiency,
the ESDIRK5 scheme requires more storage and is less robust than the ESDIRK4 scheme
(internal stability problems surface at huge time steps). As robustness is a major concern,
the ESDIRK4 scheme is recommended over the ESDIRK5 scheme.

A major contributor to the inefficiency of implicit methods is solving the nonlinear
systems at each stage (step) to inappropriate subiteration tolerance levels. If the nonlinear
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FIG. 6. The effects of tolerance ratio T on solution accuracy for the BDF3 and ESDIRK4 schemes.

solve is iterated too many times, the additional work does not increase the solution accuracy
or robustness, but does increase the cost. If the nonlinear solve is not iterated enough, then
the solution error will be dominated by the algebraic errors in the nonlinear solve, robustness
will suffer, and the entire solution will be in jeopardy. The solution cannot be more accurate
than the algebraic errors in the nonlinear equations. Unfortunately, it is not known a priori to
what levels the nonlinear equations should be solved. A final study is performed by varying
the tolerance ratio T over the interval 1

200 , 1
20 , 1

2 . The temporal error tolerances used in the
previous study, 10−1, 10−2, and 10−3, are again used.

Figure 6 shows a plot of the solution accuracies for the BDF3 and the ESDIRK4 schemes.
Ideally, increasing the tolerance ratio should move the curves uniformly to smaller values
of work, until at a critical tolerance ratio the solution accuracy begins to deteriorate. The
T = 1

20 and 1
200 yield essentially the same accuracy levels but significantly differ in the

amount of work required. For T = 1
2 the solution accuracy begins to degrade for both

schemes. Similar results are exhibited with the other ESDIRK schemes. It is concluded
that the nonlinear subiteration in TLNS3D should be converged so that the tolerance ratio
T = 1

10 is achieved, independent of the temporal integration method used.

TEMPORAL ERROR PREDICTOR

Any modern, efficient time advancement scheme should not only be capable of esti-
mating temporal error, it should also have an error controller that adjusts step size to
maintain fixed local error. An error estimate is obtained using n+1 = Un+1 − Ûn+1. Nor-
malization of the U-vector components to order unity is recommended so that the er-
ror measure over all equations may be compared. As the main and embedded schemes
differ in order by one, n+1 is then an error estimate of the lower order solution. The
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FIG. 7. Cycle variation of predicted temporal error as calculated with ESDIRK4.

ESDIRK schemes used in this study have stage-order two, and experience shows that n+1

is more reliable than with stage-order one SDIRKs. In this study it was found that there
was only a minor need for step-size adjustment and hence an I-controller was deemed
sufficient [7]. A significant additional benefit of the error estimate is that a rational stop-
ping criterion for the nonlinear subiteration can be imposed. Specifically, the algebraic
and temporal errors can be systematically balanced without having to make multiple
runs.

Figure 7 shows the predicted temporal error as calculated by the ESDIRK4 scheme.
The L2 and L∞ are presented for the coarse grid case shown in Fig. 1. A fixed time step
of 	t = 1

2 was used with a nonlinear subiteration tolerance of 0.5 × 10−5. The temporal
error correlates highly with the maximum and minimum lift. Note that about one-half an
order variation in temporal error is observed over the shedding cycle. Calculations were
successfully performed in this case in a variable time-stepping mode using a controller (see
Kennedy and Carpenter [9] for details on controllers). The results were encouraging, but
further work is needed to optimize the coupling between the ESDIRK4 scheme and the
controller.

CONCLUSIONS/FUTURE WORK

The accuracy and efficiency of several time integration schemes have been investigated for
the unsteady compressible Navier–Stokes equations. Time is discretized implicitly, while the
spatial discretization is a conventional cell-centered finite-volume scheme with artificial dis-
sipation added for stability. The nonlinear equations are solved at each step with a multigrid
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algorithm. This study focuses on the efficiency of higher order Runge–Kutta schemes in
comparison with the popular backward differentiation formulas (BDF). For this comparison,
an unsteady two-dimensional laminar flow problem was chosen, i.e., flow around a circular
cylinder at Re = 1200. On this problem for all realistic error levels (smaller than 10−1)
fourth- and fifth-order Runge–Kutta schemes are more efficient than the popular second-
order backward differentiation formula (BDF2) scheme. For reasons of robustness and
computer storage, the fourth-order Runge–Kutta method is recommended. The efficiency
of the fourth-order Runge–Kutta scheme exceeds that of the BDF2 by a factor of 2.5 at en-
gineering error tolerance levels (10−1–10−2). Efficiency gains are more dramatic at smaller
tolerances.

Runge–Kutta schemes are susceptible to order reduction for stiff systems, although none
was experienced for this laminar problem with stiffness levels of O(103). Future studies
will investigate the convergence behavior of ESDIRK schemes on other stiff problems. The
specific focus of our next study will be on the stiffness generated by popular turbulence
models. It is well-known that turbulence models exhibit considerable stiffness at moderate
to high Reynolds numbers (106). The ultimate objective will be to compare the efficiency
of ESDIRK schemes with the BDF family of schemes.

A final observation is relevant, as it helps to focus future work. The TLNS3D solver
technology used for the nonlinear algebraic system is nearly state of the art but cannot be
considered efficient. For example, one time step of the implicit operator is O(102) times
more expensive than one explicit time step. Significant potential improvements [O(10)] in
the temporal efficiency of implicit schemes could be achieved from algebraic solver de-
velopments. One could speculate that solver improvements could be more dramatic than
improvements in integration techniques. Moderate advances in both areas as well as com-
puter hardware advances will make 3D temporal aerodynamic simulations an engineering
tool in the next decade.

APPENDIX
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ESDIRK4
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